Outline

Contents

1		e divisors	1
	1.1	Free divisors	1
	1.2	Linear free divisors	2
	1.3	Linear free divisors and Prehomogeneous vector spaces	2
2	Results		
	2.1	Main Theorem	3
	2.2	Consequences	3
		Examples	
3	Closing Remarks		
	3.1	Remarks	4
	3.2	Bibliography	4

1 Free divisors

1.1 Free divisors

Logarithmic vector fields

Let (D,0) be a hypersurface germ in $(\mathbb{C}^n,0)$ defined by $f\in \mathscr{O}_{\mathbb{C}^n,0}$.

Definition 1. The $\mathcal{O}_{\mathbb{C}^n,0}$ -module of *logarithmic vector fields* is

$$\begin{split} \operatorname{Der}_{\mathbb{C}^n,0}(-\log D) &:= \{\eta \in \operatorname{Der}_{\mathbb{C}^n,0} : \eta(f) \in (f)\} \\ &= \text{the (ambient) vector fields tangent to } D. \end{split}$$

Also a Lie algebra.

Question

Question 1. How is the structure of D reflected in $Der_{\mathbb{C}^n,0}(-\log D)$?

- Number of components?
- Degrees of defining equations (if homogeneous)?

Free divisors

Definition 2 (Saito). $(D,0) \subset (\mathbb{C}^n,0)$ is a *free divisor* if $\mathrm{Der}_{\mathbb{C}^n,0}(-\log D)$ is a free $\mathscr{O}_{\mathbb{C}^n,0}$ -module, necessarily of rank n.

 $\iff \operatorname{Der}_{\mathbb{C}^n,0}(-\log D)$ is generated by only n elements.

Examples

Example 3 (Free hyperplane arrangements). $D = V(xy(x+y)) \subset \mathbb{C}^2$

$$\eta_1 = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$$
 $\eta_2 = y(x+y) \frac{\partial}{\partial y}$

1.2 Linear free divisors

Linear free divisors

Call (D,0) a linear free divisor if $\operatorname{Der}_{\mathbb{C}^n,0}(-\log D)$ has a free basis of linear vector fields.

Example 4 (Linear free divisors). $D = V(x(xz - y^2)) \subset \mathbb{C}^3$

$$\xi_{1} = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}$$

$$\xi_{2} = y \frac{\partial}{\partial y} + 2z \frac{\partial}{\partial z}$$

$$\xi_{3} = x \frac{\partial}{\partial y} + 2y \frac{\partial}{\partial z}$$

The "opposite" of a free hyperplane arrangement?

Linear free divisors

Example 5 (Classification of LFDs in \mathbb{C}^4 , [GMNRS09, §6]). • xyzw = 0 (the normal crossings divisor)

- $x(xz y^2)w = 0$
- xy(xw yz) = 0
- $x(y^3 3xyz + 3x^2w) = 0$
- $y^2z^2 4xz^3 4y^3w + 18xyzw 27x^2w^2 = 0$ (the discriminant of the "binary cubics")

1.3 Linear free divisors and Prehomogeneous vector spaces

Prehomogeneous vector spaces

Definition 6. A prehomogeneous vector space (PVS) is a rational representation $\rho: G \to \operatorname{GL}(V)$ of a connected complex algebraic group G such that G has a (unique, Zariski) open orbit $\Omega \subset V$.

Differentiating gives a Lie algebra (anti-)homomorphism

$$\tau: \mathfrak{g} \to \mathrm{Der}_{\mathbb{C}^n,0}(-\log(V \setminus \Omega))_0$$

where

$$\mathrm{Der}_{\mathbb{C}^n,0}(-\log(V\setminus\Omega))_0:=$$
 linear logarithmic vfs

Linear free divisors and PVSs

Lemma 7 ([GMNRS09, Lemma 2.3]). Every linear free divisor $(D,0) \subset V$ comes from a PVS $\rho: G \to \operatorname{GL}(V)$ with $\dim(G) = \dim(V)$ and $D = V \setminus \Omega$.

For such a PVS, say G defines D. Then

$$\tau: \mathfrak{g} \to \operatorname{Der}_V(-\log D)_0$$

is an isomorphism.

Facts about Prehomogeneous vector spaces

Let $\rho: G \to \operatorname{GL}(V)$ be a PVS.

Definition 8. For f a rational function on V and character $\chi: G \to \mathbb{G}_m := \mathrm{GL}(\mathbb{C})$ of G, write ' $f \stackrel{\mathrm{m}}{\longleftrightarrow} \chi$ ' when

$$f(\rho(g)(v)) = \chi(g) \cdot f(v)$$

for all $q \in G$, $v \in \Omega$.

• Let $v_0 \in \Omega$. Then the hypersurface components of $V \setminus \Omega$ are related to the characters of $H = G/[G,G] \cdot G_{v_0}$:

number of components = rank(character group(H))

2 Results

2.1 Main Theorem

The Main Theorem

Let G define a linear free divisor $(D,0) \subset V$ with components defined by f_1,\ldots,f_r , $f_i \stackrel{\mathrm{m}}{\longleftrightarrow} \chi_i$. Let $v_0 \in \Omega$ and $\mathbb{G}_m := \mathrm{GL}(\mathbb{C})$.

Theorem 9 (P.). Then $(\chi_1,\ldots,\chi_r):G\to (\mathbb{G}_m)^r$ is surjective, with kernel $H=[G,G]\cdot G_{v_0}$.

2.2 Consequences

Consequences

Theorem 10 (P.). Then

$$r = \dim(G/[G, G]) = \dim(\mathfrak{g}/[\mathfrak{g}, \mathfrak{g}]).$$

Also see how elements of generic isotropy subgroups on $\mathcal D$ permute the level sets of the f_i

Consequences

For the Levi decomposition $G = \operatorname{Rad}_u(G) \rtimes L$, L reductive,

- $r = \dim(\mathbf{Z}(L))$
- $[G,G] = \operatorname{Rad}_u(G) \rtimes [L,L]$
- Homotopy groups of $\Omega = V \setminus D$ reduce to those of [L, L]

2.3 Examples

Examples

Let G define the linear free divisor $(D, 0) \subset V$.

Example 11 ([GMS11, Theorem 2.12]). G is abelian iff D is equivalent to the normal crossings divisor.

Examples

Let G define the linear free divisor $(D,0) \subset V$

Example 12 ([GMS11, Lemma 2.6]). If G is reductive, then the number of components of D is $\dim(\mathbb{Z}(G))$.

Examples

Let G define the linear free divisor $(D,0) \subset V$

Example 13 (P.). If G is solvable, then the number of components of D is the dimension of a maximal torus of G.

3 Closing Remarks

3.1 Remarks

Remarks

- The abstract Lie algebra structure g determines the number of components, but **does not** determine the degrees of the functions defining the components!
- More generally, how to do

$$\operatorname{Der}_{\mathbb{C}^n,0}(-\log D) \mapsto \text{number of components}?$$

(see also [HM93])

• Questions?

3.2 Bibliography

References

References

[GMNRS09] Michel Granger, David Mond, Alicia Nieto-Reyes, and Mathias Schulze, Linear free divisors and the global logarithmic comparison theorem, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 811–850. MR 2521436 (2010g;32047)

[GMS11] Michel Granger, David Mond, and Mathias Schulze, Free divisors in prehomogeneous vector spaces, Proc. Lond. Math. Soc. (3) 102 (2011), no. 5, 923–950. MR 2795728

[HM93] Herwig Hauser and Gerd Müller, Affine varieties and Lie algebras of vector fields, Manuscripta Math. 80 (1993), no. 3, 309–337. MR 1240653 (94j:17025)

[Pik] Brian Pike, Additive relative invariants and the components of a linear free divisor, arXiv:1401.2976 [math.RT].

Example 14. In \mathbb{C}^5 , the groups defining

$$\begin{split} D_1: & (x_3x_5-x_4^2) \begin{vmatrix} 0 & x_1 & x_2 \\ x_1 & x_3 & x_4 \\ x_2 & x_4 & x_5 \end{vmatrix} = 0, \\ \text{and } D_2: & (x_2^2x_3^2-4x_1x_3^3-4x_2^3x_4+18x_1x_2x_3x_4-27x_4^2x_1^2)x_5 = 0 \end{split}$$

both have abstract Lie algebra structure $\mathfrak{gl}_2(\mathbb{C})\oplus\mathfrak{gl}_1(\mathbb{C})$