The number of irreducible components of a linear free divisor

Brian Pike

University of Toronto, Scarborough bpike@utsc.utoronto.ca Reference: arXiv:1401.2976 [math.RT]

January 15, 2014

2 Results

Brian Pike (U. of Toronto) The number of irreducible components of a linear free divisor

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

Free divisors Linear free divisors Linear free divisors and Prehomogeneous vector spaces

Logarithmic vector fields

Let (D, 0) be a hypersurface germ in $(\mathbb{C}^n, 0)$ defined by $f \in \mathscr{O}_{\mathbb{C}^n, 0}$.

Definition

The $\mathscr{O}_{\mathbb{C}^n,0}$ -module of *logarithmic vector fields* is

$$\operatorname{Der}_{\mathbb{C}^n,0}(-\log D) := \{\eta \in \operatorname{Der}_{\mathbb{C}^n,0} : \eta(f) \in (f)\}$$

= the (ambient) vector fields tangent to *D*.

Also a Lie algebra.

ヘロト 人間 ト ヘヨト ヘヨト

1

Free divisors Linear free divisors Linear free divisors and Prehomogeneous vector spaces

Question

Question

How is the structure of D reflected in $Der_{\mathbb{C}^{n},0}(-\log D)$?

- Number of components?
- Degrees of defining equations (if homogeneous)?

Brian Pike (U. of Toronto) The number of irreducible components of a linear free divisor

Free divisors Results Closing Remarks
Free divisors Linear free divisors Linear free divisors and Prehomogeneous vector spaces
Free divisors

Definition (Saito)

 $(D,0) \subset (\mathbb{C}^n,0)$ is a *free divisor* if $\operatorname{Der}_{\mathbb{C}^n,0}(-\log D)$ is a free $\mathscr{O}_{\mathbb{C}^n,0}$ -module, necessarily of rank *n*.

$\iff \operatorname{Der}_{\mathbb{C}^n,0}(-\log D)$ is generated by only *n* elements.

Brian Pike (U. of Toronto) The number of irreducible components of a linear free divisor

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Free divisors Results Closing Remarks
Free divisors Linear free divisors Linear free divisors and Prehomogeneous vector spaces
Free divisors

Definition (Saito)

 $(D,0) \subset (\mathbb{C}^n,0)$ is a *free divisor* if $\operatorname{Der}_{\mathbb{C}^n,0}(-\log D)$ is a free $\mathscr{O}_{\mathbb{C}^n,0}$ -module, necessarily of rank *n*.

 $\iff \text{Der}_{\mathbb{C}^n,0}(-\log D)$ is generated by only *n* elements.

Free divisors Linear free divisors Linear free divisors and Prehomogeneous vector spaces

Example (Free hyperplane arrangements)

$$D = V(xy(x+y)) \subset \mathbb{C}^2$$

$$\eta_1 = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \qquad \qquad \eta_2 = y(x+y) \frac{\partial}{\partial y}$$

Brian Pike (U. of Toronto) The number of irreducible components of a linear free divisor

・ロト ・ 同ト ・ ヨト ・ ヨト

э

 Free divisors
 Free divisors

 Results
 Linear free divisors

 Closing Remarks
 Linear free divisors and Prehomogeneous vector spaces

Linear free divisors

Call (D, 0) a *linear free divisor* if $\text{Der}_{\mathbb{C}^n,0}(-\log D)$ has a free basis of *linear* vector fields.

Example (Linear free divisors)

$$D=V(x(xz-y^2))\subset \mathbb{C}^3$$

$$\xi_{1} = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}$$
$$\xi_{2} = y \frac{\partial}{\partial y} + 2z \frac{\partial}{\partial z}$$
$$\xi_{3} = x \frac{\partial}{\partial y} + 2y \frac{\partial}{\partial z}$$

The "opposite" of a free hyperplane arrangement?

Brian Pike (U. of Toronto) The number of irreducible components of a linear free divisor

ヘロト 人間 ト ヘヨト ヘヨト

3

 Free divisors
 Free divisors

 Results
 Linear free divisors

 Closing Remarks
 Linear free divisors and Prehomogeneous vector spaces

Linear free divisors

Call (D, 0) a *linear free divisor* if $\text{Der}_{\mathbb{C}^n,0}(-\log D)$ has a free basis of *linear* vector fields.

Example (Linear free divisors)

$$D=V(x(xz-y^2))\subset \mathbb{C}^3$$

$$\xi_{1} = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}$$
$$\xi_{2} = y \frac{\partial}{\partial y} + 2z \frac{\partial}{\partial z}$$
$$\xi_{3} = x \frac{\partial}{\partial y} + 2y \frac{\partial}{\partial z}$$

The "opposite" of a free hyperplane arrangement?

ヘロト ヘアト ヘビト ヘビト

3

Free divisors Linear free divisors Linear free divisors and Prehomogeneous vector spaces

Linear free divisors

Example (Classification of LFDs in C⁴, [GMNRS09, §6])

- *xyzw* = 0 (the *normal crossings divisor*)
- $x(xz-y^2)w=0$
- xy(xw yz) = 0

•
$$x(y^3 - 3xyz + 3x^2w) = 0$$

•
$$y^2z^2 - 4xz^3 - 4y^3w + 18xyzw - 27x^2w^2 = 0$$

(the discriminant of the "binary cubics")

Free divisors Linear free divisors Linear free divisors and Prehomogeneous vector spaces

Prehomogeneous vector spaces

Definition

A prehomogeneous vector space (PVS) is a rational representation $\rho : G \to GL(V)$ of a connected complex algebraic group G such that G has a (unique, Zariski) open orbit $\Omega \subset V$.

Differentiating gives a Lie algebra (anti-)homomorphism

 $au:\mathfrak{g}\to \mathrm{Der}_{\mathbb{C}^n,0}(-\log(V\setminus\Omega))_0$

where

 $\operatorname{Der}_{\mathbb{C}^n,0}(-\log(V \setminus \Omega))_0 := \text{linear logarithmic vfs}$

ヘロン 人間 とくほ とくほ とう

-

Free divisors Linear free divisors Linear free divisors and Prehomogeneous vector spaces

Prehomogeneous vector spaces

Definition

A prehomogeneous vector space (PVS) is a rational representation $\rho : G \to GL(V)$ of a connected complex algebraic group G such that G has a (unique, Zariski) open orbit $\Omega \subset V$.

Differentiating gives a Lie algebra (anti-)homomorphism

$$au:\mathfrak{g}
ightarrow \mathrm{Der}_{\mathbb{C}^n,0}(-\log(\mathit{V}\setminus\Omega))_0$$

where

$$\operatorname{Der}_{\mathbb{C}^n,0}(-\log(V\setminus\Omega))_0 :=$$
 linear logarithmic vfs

Free divisors Linear free divisors Linear free divisors and Prehomogeneous vector spaces

Linear free divisors and PVSs

Lemma ([GMNRS09, Lemma 2.3])

Every linear free divisor $(D, 0) \subset V$ comes from a PVS $\rho : G \to GL(V)$ with dim $(G) = \dim(V)$ and $D = V \setminus \Omega$.

For such a PVS, say *G defines D*. Then

$$\tau:\mathfrak{g}\to\mathrm{Der}_V(-\log D)_0$$

is an isomorphism.

 Free divisors
 Free divisors

 Results
 Linear free divisors

 Closing Remarks
 Linear free divisors and Prehomogeneous vector spaces

Facts about Prehomogeneous vector spaces

Let $\rho : G \to GL(V)$ be a PVS.

Definition

For *f* a rational function on *V* and character $\chi : G \to \mathbb{G}_m := \operatorname{GL}(\mathbb{C})$ of *G*, write '*f* $\stackrel{\text{m}}{\longleftrightarrow} \chi$ ' when

 $f(\rho(g)(v)) = \chi(g) \cdot f(v)$

for all $g \in G$, $v \in \Omega$.

Let v₀ ∈ Ω. Then the hypersurface components of V \ Ω are related to the characters of H = G/[G, G] · G_{v₀}:

number of components = rank(character group(H))

イロン 不同 とくほ とくほ とう

 Free divisors
 Free divisors

 Results
 Linear free divisors

 Closing Remarks
 Linear free divisors and Prehomogeneous vector spaces

Facts about Prehomogeneous vector spaces

Let $\rho : G \to GL(V)$ be a PVS.

Definition

For *f* a rational function on *V* and character $\chi : G \to \mathbb{G}_m := \operatorname{GL}(\mathbb{C})$ of *G*, write '*f* $\stackrel{\text{m}}{\longleftrightarrow} \chi$ ' when

$$f(\rho(g)(v)) = \chi(g) \cdot f(v)$$

for all $g \in G$, $v \in \Omega$.

Let v₀ ∈ Ω. Then the hypersurface components of V \ Ω are related to the characters of H = G/[G, G] · G_{v₀}:

number of components = rank(character group(H))

ヘロト ヘアト ヘビト ヘビト

÷.

Main Theorem Consequences Examples

The Main Theorem

Let *G* define a linear free divisor $(D, 0) \subset V$ with components defined by $f_1, \ldots, f_r, f_i \stackrel{\text{m}}{\longleftrightarrow} \chi_i$. Let $v_0 \in \Omega$ and $\mathbb{G}_m := \operatorname{GL}(\mathbb{C})$.

Theorem (P.)

Then $(\chi_1, \ldots, \chi_r) : G \to (\mathbb{G}_m)^r$ is surjective, with kernel $H = [G, G] \cdot G_{v_0}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Free divisors	
Results	Consequences
Closing Remarks	

Consequences

Theorem (P.)

Then

$$r = \dim(G/[G,G]) = \dim(\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]).$$

Also see how elements of generic isotropy subgroups on D permute the level sets of the f_i

ヘロト 人間 ト ヘヨト ヘヨト

э

Consequences

For the Levi decomposition $G = \operatorname{Rad}_u(G) \rtimes L$, L reductive,

Free divisors

Results Closing Remarks Consequences

•
$$r = \dim(Z(L))$$

•
$$[G, G] = \operatorname{Rad}_u(G) \rtimes [L, L]$$

• Homotopy groups of $\Omega = V \setminus D$ reduce to those of [L, L]

イロト イポト イヨト イヨト

э.

Let *G* define the linear free divisor $(D, 0) \subset V$.

Example ([GMS11, Theorem 2.12])

G is abelian iff D is equivalent to the normal crossings divisor.

Let *G* define the linear free divisor $(D, 0) \subset V$

Example ([GMS11, Lemma 2.6])

If G is reductive, then the number of components of D is dim(Z(G)).

Let *G* define the linear free divisor $(D, 0) \subset V$

Example (P.)

If G is solvable, then the number of components of D is the dimension of a maximal torus of G.

Remarks Bibliography

Remarks

- The abstract Lie algebra structure g determines the number of components, but **does not** determine the degrees of the functions defining the components!
- More generally, how to do

 $\operatorname{Der}_{\mathbb{C}^n,0}(-\log D) \mapsto \text{number of components}$?

(see also [HM93])

Questions?

くロト (過) (目) (日)

Remarks Bibliography

References

- [GMNRS09] Michel Granger, David Mond, Alicia Nieto-Reyes, and Mathias Schulze, Linear free divisors and the global logarithmic comparison theorem, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 811–850. MR 2521436 (2010g:32047)
- [GMS11] Michel Granger, David Mond, and Mathias Schulze, Free divisors in prehomogeneous vector spaces, Proc. Lond. Math. Soc. (3) 102 (2011), no. 5, 923–950. MR 2795728
- [HM93] Herwig Hauser and Gerd Müller, Affine varieties and Lie algebras of vector fields, Manuscripta Math. 80 (1993), no. 3, 309–337. MR 1240653 (94j:17025)
- [Pik] Brian Pike, Additive relative invariants and the components of a linear free divisor, arXiv:1401.2976 [math.RT].

Remarks Bibliography

Example

In \mathbb{C}^5 , the groups defining

$$D_{1}: (x_{3}x_{5}-x_{4}^{2})\begin{vmatrix} 0 & x_{1} & x_{2} \\ x_{1} & x_{3} & x_{4} \\ x_{2} & x_{4} & x_{5} \end{vmatrix} = 0,$$

and $D_{2}: (x_{2}^{2}x_{3}^{2}-4x_{1}x_{3}^{3}-4x_{2}^{3}x_{4}+18x_{1}x_{2}x_{3}x_{4}-27x_{4}^{2}x_{1}^{2})x_{5} = 0$

both have abstract Lie algebra structure $\mathfrak{gl}_2(\mathbb{C})\oplus\mathfrak{gl}_1(\mathbb{C})$

イロト 不得 とくほと くほとう

= 990