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1. Introduction

My research concerns the singularities of complex analytic varieties, the
singularities of holomorphic maps, and connections between these topics
and representation theory. Of particular interest are the ‘logarithmic vector
fields’ and a class of hypersurfaces called ‘free divisors’.

Let X be a smooth complex manifold with p ∈ X, and let OX,p denote the
ring of germs at p of holomorphic functions on X. Let (V , p) be a reduced
analytic germ in X, with V defined by the vanishing of the functions in an
OX,p–ideal I. Let DerX,p denote the germs at p of holomorphic vector fields
on X.

Consider the germs of vector fields on the ambient space X that are
tangent to V ; these logarithmic vector fields are formally defined by the
condition

DerX,p(− log V ) := {η ∈ DerX,p : η(I) ⊆ I}.

This OX,p–module is also an infinite-dimensional Lie algebra, closed under
the Lie bracket of vector fields, and may be thought of as the Lie algebra of
the group of biholomorphic diffeomorphisms of (X, p) that leave the set V
invariant. It is thus natural to expect the algebraic properties of the logarith-
mic vector fields to strongly reflect the algebraic and geometric properties
of (V , p).

The module DerX,p(− log V ) always requires ≥ dim(X) generators. A
nonempty germ (V , p) 6= (X, p) is called a free divisor if DerX,p(− log V )
requires only dim(X) generators, or equivalently, if DerX,p(− log V ) is a free
OX,p–module, necessarily of rank equal to dim(X). Geometrically, a free
divisor (V , p) is a hypersurface germ that is either smooth, or maximally
singular in the sense that the singular locus Sing(V ) has codimension 1
in V . There is also an algebraic characterization of free divisors due to
Aleksandrov [Ale90].

Examples of free divisors include the free hyperplane arrangements, where
V is a union of hyperplanes; all reduced plane curve singularities; and all
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discriminants1 of versal unfoldings of isolated hypersurface and isolated com-
plete intersection singularities, e.g.:

xyz(x− y)(x− z) = 0, x2 − y3 = 0, or b2 − 4c = 0.

Despite being studied since 1980 ([Sai80]), free divisors remain mysteri-
ous. For instance, it is not completely understood which hyperplane ar-
rangements are free.

2. Research Objectives

My research aims to understand singular analytic varieties and their as-
sociated structures, such as their modules of logarithmic vector fields or the
topology of their complement. Free divisors are convenient test subjects:
they are numerous, nontrivial but accessible, and they have nice algebraic
properties. I particularly enjoy how this work connects with diverse areas
of mathematics.

2.1. Linear free divisors and prehomogeneous vector spaces. Free
divisors classically arose as various types of discriminants, but also have
connections to representation theory and harmonic analysis through the
study of ‘prehomogeneous vector spaces’ (see [Sat90]). A hypersurface V in
a vector space W is called a linear free divisor if DerW (− log V ) has a free
basis consisting of linear vector fields such as 2x∂x − z∂y or (x− y)∂y. If V
is a linear free divisor, then it is defined by a homogeneous polynomial of
degree dim(W ).

Each linear free divisor arises from a prehomogeneous vector space, a ratio-
nal representation ρ : G→ GL(W ) of a connected complex linear algebraic
group G on a vector space W , such that ρ has an open orbit Ω in W .
Then Ω is Zariski open, and its complement is an algebraic set. As all ρ(g)
leave invariant Ωc, differentiating ρ gives a Lie algebra (anti-)homomorphism
dρ(e) : g → DerW (− log Ωc), where g is the Lie algebra of G and the image
is a finite-dimensional Lie algebra of linear logarithmic vector fields (e.g.,
[DP15, §1]).

By [GMNRS09, §2], every linear free divisor V ⊂W is of the form Ωc for
a prehomogeneous vector space ρ : G → GL(W ) with dim(G) = dim(W )
and a “reduced” Ωc, and conversely, and then DerW (− log Ωc) is generated
by dρ(e)(g). Among all prehomogeneous vector spaces, those that give linear
free divisors are the extremal class for which the group is of minimal possible
dimension, and yet the group action generates all logarithmic vector fields.

1For example, the singularity defined by f(x) = xn has (x, c1, . . . , cn) 7→ xn+
∑

i cix
n−i

as one possible versal unfolding, and the discriminant of this unfolding is defined by the
classical discriminant ∆ of the generic monic degree n polynomial xn +

∑
i cix

n−i; recall

that ∆ is a polynomial in c1, . . . , cn such that ∆(c1, . . . , cn) = 0 iff xn +
∑

i cix
n−i has a

multiple root.
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2.1.1. Finding linear free divisors. The initial examples of linear free di-
visors came primarily from quivers ([GMNRS09, BM06]). More recently,
Granger–Mond–Schulze [GMS11] showed that up to ‘castling transforma-
tion’, the irreducible representations that give linear free divisors are known
by a classification of certain prehomogeneous vector spaces by Sato–Kimura
[SK77]. In these examples, the group is always reductive.

In contrast, Damon and I [DP15] studied linear free divisors coming from
representations of solvable linear algebraic groups. These are often arranged
as infinite ‘towers’ of linear free divisors that come from ‘towers’ of repre-
sentations of solvable groups. We also gave examples of linear free divisors
for which the group is neither solvable nor reductive, and observed a pat-
tern that solvable group extensions often allow new linear free divisors to
be constructed from old, in some cases automatically producing an infinite
tower from a single linear free divisor (e.g., [Pik10, §5.3]). It remains to
thoroughly understand this phenomenon.

2.1.2. The structure of linear free divisors. Granger–Mond–Schulze [GMS11]
described the structure of linear free divisors with reductive groups; for
instance, the number of irreducible components of the divisor equals the
dimension of the center of G ⊂ GL(W ), and the number of irreducible G–
modules in W . More recently, I used a criterion of Brion [Bri06, GMS11] to
show [Pika] that for a prehomogeneous vector space ρ : G→ GL(W ) defin-
ing any linear free divisor V , there are no nontrivial rational representations
G → (C,+). Then by the theory of prehomogeneous vector spaces devel-
oped by Mikio Sato, and some structure theory for linear algebraic groups,
the number of irreducible components of V is equal to dim(G/[G,G]); this
gives significant insight into the structure of the groups and representations
that produce linear free divisors. For instance, the Lie algebra g of G is the
direct sum of [g, g] and an abelian subalgebra. Also, the isotropy subgroup
at a generic point on an irreducible component V (fi) of a linear free divi-
sor V (f1 · · · fk) = Ωc nontrivially permutes the level sets of fi and leaves
invariant all level sets of all fj , j 6= i.

With further study, this may lead to a structure theorem for linear free
divisors. All linear free divisors known to me take the form of a reductive
linear free divisor that is then extended by a solvable group in a process
described in [DP15], to produce a ‘mixed’ linear free divisor on a larger
space.

2.1.3. Classifying linear free divisors. Any conjecture on the structure of
linear free divisors must be informed by a variety of examples. Although
[GMNRS09] classified linear free divisors in Ck for k ≤ 4, these examples
are not sufficiently complicated; for example, they are all either solvable
or reductive, never mixed. In 2011, I attempted to classify the linear free
divisors in C5. Though this project has not yet been finished, it produced
interesting new examples and led to the results in [Pika]. Brent Pym [Pym13]
also used these examples to produce new examples of Poisson structures.
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2.1.4. Deforming linear free divisors. Torielli [Tor12] studied deformations
of linear free divisors, and proved that reductive linear free divisors are rigid
and cannot be deformed to an inequivalent linear free divisor. Although he
conjectured that this was true for all linear free divisors, my classification
work produced a solvable counterexample in C5. In addition to furthering his
work, it would be interesting to study the deformations of prehomogeneous
vector spaces. For example, the variety V of singular 4× 4 skew-symmetric
matrices is a component of the complement of the open orbit of a particular
prehomogeneous vector space ρ, but there is no known linear free divisor
that contains V as a component; may ρ be deformed to produce such a
linear free divisor?

2.1.5. The topology of the complement of a linear free divisor. One way to
study a hypersurface is to study the topology of its complement. For free
divisors specifically, there are at least two problems of interest. The first is to
determine when the complement of a free divisor is an Eilenberg–MacLane
space of type K(π, 1), that is, with trivial nth homotopy group for n > 1.
For instance, this includes a conjecture of Saito regarding free hyperplane
arrangements (see [OT92]), as well as the classical “K(π, 1) problem” for
versal deformations of isolated hypersurface singularities. The second is to
determine when the logarithmic comparison theorem holds, that is, when
the cohomology of the complement may be computed by the complex of
logarithmic differential forms that have controlled poles along the divisor
(e.g., [CJNMM96, GMNRS09]).

Since the complement of a linear free divisor is diffeomorphic to G/Gv0

for Gv0 a discrete isotropy subgroup, these problems are more accessible for
linear free divisors. For instance, Damon and I [DP12] showed that for a
large class of examples of solvable linear free divisors, both the complements
of the linear free divisors and the Milnor fiber of their defining equations are
K(π, 1)’s. In [Pika], I showed that for n > 1, the nth homotopy group of the
complement of a linear free divisor is equal to the nth homotopy group of
the semisimple part of a Levi subgroup of G. In future work, [Pika] should
also provide insight into the logarithmic comparison theorem problem.

2.2. The ubiquity of free divisors. Linear free divisors are simplified
test cases for many questions about arbitrary free divisors, and indeed that
is the origin of many of the questions in §2.1. There are other questions
specific to free divisors.

2.2.1. Discriminants of deformations. A recurring pattern is that the dis-
criminant of a suitable deformation of a certain type of singularity is a free
divisor. For instance, free divisors classically arose as discriminants of versal
unfoldings of isolated hypersurface and isolated complete intersection sin-
gularities. Damon [Dam98] gave sufficient conditions for a group of equiva-
lences G to have the property that the discriminant of any G -versal unfolding
is a free divisor. A linear free divisor is in some sense the discriminant of
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a prehomogeneous vector space. Buchweitz has suggested that “every free
divisor is the discriminant of something,” and it would be very interesting
to construct, from a free divisor V , a deformation with discriminant equal
to V .

2.2.2. Pulling back free divisors. A natural question is to understand the
behavior of free divisors under various operations. If ϕ : X → Y is a map
between smooth spaces, and V is a free divisor in Y , when is ϕ−1(V ) a
free divisor? Buchweitz and I [BP] showed that when all η ∈ DerY (− log V )
lift across ϕ, and the deformation module T 1

X/Y of ϕ is a Cohen–Macaulay

OX,p–module of codimension 2, then ϕ−1(V ) is also a free divisor. (For
instance, we found many instances from invariant theory where these hy-
potheses are satisfied for the algebraic quotient ϕ : X → X//G, where G is
a reductive group and X is a G-representation.) However, our hypotheses
may be unnecessarily restrictive: Mond–Schulze [MS13] have identified cases
in which pulling back a non-free divisor produces a free divisor. We should
determine the exact conditions for ϕ−1(V ) to be a free divisor.

Conversely, if ϕ−1(V ) is a free divisor, what may be said about DerY (− log V )?
One application for this would be in the study of castling transformations.
If Mp,q denotes the space of p × q complex matrices and n > m, then
Granger–Mond–Schulze [GMS11] showed that under the castling operation
of prehomogeneous vector spaces, a linear free divisor in Mn,n−m transforms
to a linear free divisor in Mn,m, and vice-versa; both linear free divisors
are polynomials in the maximal minors of these spaces of matrices, and the
castling transformation swaps corresponding maximal minors. To generalize
this to arbitrary free divisors, as Buchweitz and I did [BP] in one direction
of the m = 1 case, it would be very useful to describe DerY (− log f) when

f ◦ϕ defines a free divisor, in particular for ϕ : Mn,m → C(n
m) that evaluates

all maximal minors.

2.2.3. Free completions. Let (V1, p) be a reduced hypersurface in (X, p).
It is natural to ask whether every such hypersurface is part of some free
divisor (V1 ∪ V2, p), which is called a free completion of V1; sometimes,
V2 is required to itself be a free divisor. Since DerX(− log(V1 ∪ V2)) =
DerX(− log V1) ∩ DerX(− log V2), this is a question about how modules of
logarithmic vector fields may intersect. Mond–Schulze [MS13] have found
instances of free completions using data from the normalization of V1. We
should describe those hypersurfaces that have a free completion, and be able
to construct the free completions.

2.3. The structure of the logarithmic vector fields. For a particular
V ⊂ X defined by an ideal I, DerX,p(− log V ) may be readily computed

by a computer as certain syzygies: for instance, a relation
∑

i ai
∂f
∂xi

+ bf =

0 corresponds to
∑

i ai
∂
∂xi
∈ DerX(− log V (f)). However, many natural

situations produce a submodule L ⊆ DerX,p(− log V ), and an open problem
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is to find necessary and sufficient conditions for L = DerX,p(− log V ). For
free divisors, this is accomplished by a criterion of Saito [Sai80] where the
condition is that the determinant of a presentation matrix M of L must be
reduced in OX,p.

2.3.1. Fitting ideals. For an arbitrary (V , p), such a presentation matrix M
is not square, and hence it is natural to instead consider the ideals generated
by minors of M of a particular size, the Fitting ideals of DerX,p/L. In [Pikb]
I found upper bounds for these Fitting ideals, and gave a geometric inter-
pretation to these ideals. I also showed that for an arbitrary hypersurface
V , L = DerX,p(− log V ) if and only if both the 0th Fitting ideal of DerX,p/L
is in some sense “reduced” with respect to all components of V , and L is a
reflexive module. (If L is free, then L is also reflexive and this simplifies to
Saito’s criterion.)

A simple example shows that for non-hypersurfaces, the Fitting ideals
alone are insufficient to prove L = DerX,p(− log V ). In future work, I will in-
vestigate whether some generalization of reflexivity holds for DerX,p(− log V )
when codim(V ) > 1; this may be the key to generalizing Saito’s work fur-
ther.

2.3.2. Lie algebra structure. Another avenue for answering this question lies
in the work of Hauser–Müller [HM93]. They investigate the Lie algebra
structure of the logarithmic vector fields, and show that modules of the
form ∩ki=1DerX,p(− log Vi) are distinguished by being the end of a chain
of subalgebras having a “maximal balanced” property. It would be very
interesting to find a practical means to check this property, and moreover
to check if k = 1.

References

[Ale90] A. G. Aleksandrov, Nonisolated hypersurface singularities, Theory of singu-
larities and its applications, Adv. Soviet Math., vol. 1, Amer. Math. Soc.,
Providence, RI, 1990, pp. 211–246. MR 1089679 (92b:32039) 1

[BM06] Ragnar-Olaf Buchweitz and David Mond, Linear free divisors and quiver rep-
resentations, Singularities and computer algebra, London Math. Soc. Lecture
Note Ser., vol. 324, Cambridge Univ. Press, Cambridge, 2006, pp. 41–77.
MR 2228227 (2007d:16028) 3

[BP] Ragnar-Olaf Buchweitz and Brian Pike, Lifting free divisors, arXiv:1310.7873
[math.AG]. Submitted. 5

[Bri06] Michel Brion, Some remarks on linear free divisors, E-mail to Ragnar-Olaf
Buchweitz, September 2006. 3
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