Outline

Contents

1	Free	Free divisors	
	1.1	Free divisors	1
	1.2	Free divisors from representations	1
2	Free	e divisors from solvable groups	2
	2.1	Motivation	2
	2.2	Block representations	3
	2.3	More free divisors	4
3	Exte	ensions of linear free divisors	6
	3.1	Results	6
	3.2	Examples	7
	3.3	Future work	7

1 Free divisors

1.1 Free divisors

Free divisors

Let θ_n be germs of holomorphic vector fields at 0 in \mathbb{C}^n .

For hypersurface $(V,0)\subset (\mathbb{C}^n,0)$, define the $\mathscr{O}_{\mathbb{C}^n,0}$ -module and Lie algebra

$$Derlog(V) = \{ \eta \in \theta_n | \eta(f) \in I(V) \text{ for all } f \in I(V) \}.$$

Definition 1 (Saito). If Derlog(V) is free (of rank n), then (V, 0) is a *free divisor*.

Our Problem

- For a vector space of square matrices (e.g., $\operatorname{Sym}_n(\mathbb{C})$, $M(n,\mathbb{C})$, $\operatorname{Sk}_{2k}(\mathbb{C})$), find a free divisor V which includes the hypersurface of singular matrices as a component.
- Even better if $V = H^{-1}(0)$ is *H-holonomic*

1.2 Free divisors from representations

Saito's criterion

Theorem 2 (Saito). Let
$$\delta^1, \dots, \delta^n \in \theta_n$$
 with $\delta^i = \sum_{j=1}^n a_{ji}(z) \frac{\partial}{\partial z_j}$. Let $M = \mathscr{O}_{\mathbb{C}^n,0}\{\delta^1, \dots, \delta^n\}$. If

- 1. M is a Lie algebra, and
- 2. the coefficient determinant $h = \det(a_{ii}(z))$ defines a reduced hypersurface (V, 0),

then (V,0) is a free divisor with Derlog(V) = M.

Representations

Definition 3. An equidimensional representation $\rho: G \to \mathrm{GL}(\mathcal{W})$ is a rational representation of a connected complex algebraic Lie group with an open orbit Ω and $n = \dim_{\mathbb{C}}(G) = \dim_{\mathbb{C}}(\mathcal{W})$.

- If $E_1, \ldots, E_n \in \mathfrak{g}$ is a basis and each $\delta^i = \xi_{E_i}$ is a vector field on \mathscr{W} obtained by differentiating ρ , then $h = \det(a_{ji}(z))$ defines the *exceptional orbit variety* $V = \mathscr{W} \setminus \Omega$.
- (Mond) By Saito's criterion, if h is reduced then V is a linear free divisor.
- If h is not reduced then V has a "free* divisor structure."

Linear free divisors

- Linear free divisors from quiver representations have been studied ([BM06, GMNRS09]); these use reductive groups
- We use solvable groups.

2 Free divisors from solvable groups

2.1 Motivation

Matrix factorizations

The complex analogues of the following matrix factorizations involve equidimensional representations of solvable groups:

- Cholesky factorization for symmetric matrices
- LU factorization for general $n \times n$ matrices
- A Cholesky-like factorization for skew-symmetric matrices

Ex: Cholesky representation

- Let $L_n(\mathbb{C})$ be the group of $n \times n$ invertible lower triangular matrices.
- $L_n(\mathbb{C})$ acts on $\operatorname{Sym}_n(\mathbb{C})$ by $A \cdot M = AMA^T$.
- Equidimensional!
- Exceptional orbit variety?

Cholesky representation

Matrix of coefficients for 3×3 , for some choice of bases:

$$\begin{pmatrix} 2x_{11} & 0 & 0 & 0 & 0 & 0 \\ x_{12} & x_{11} & 0 & x_{12} & 0 & 0 \\ x_{13} & 0 & x_{11} & 0 & x_{12} & x_{13} \\ 0 & 2x_{12} & 0 & 2x_{22} & 0 & 0 \\ 0 & x_{13} & x_{12} & x_{23} & x_{22} & x_{23} \\ 0 & 0 & 2x_{13} & 0 & 2x_{23} & 2x_{33} \end{pmatrix}$$

Is determinant reduced?

Cholesky representation

• Consider the partial flag of invariant subspaces of $\operatorname{Sym}_3(\mathbb{C})$:

$$\{0\} \subset \left\{ \begin{pmatrix} 0 & 0 & * \\ 0 & 0 & * \\ * & * & * \end{pmatrix} \right\} \subset \left\{ \begin{pmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \right\} \subset \operatorname{Sym}_3(\mathbb{C}).$$

• Kernels of corresponding quotient representations $(L_3(\mathbb{C}) \to GL(\operatorname{Sym}_3(\mathbb{C})/W))$ are

$$\{\pm I\} \subset \left\{\pm \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ * & * & * \end{pmatrix}\right\} \subset \left\{\begin{pmatrix} \pm 1 & 0 & 0 \\ * & * & 0 \\ * & * & * \end{pmatrix}\right\} \subset L_3(\mathbb{C}).$$

Cholesky representation

With bases chosen to respect this structure:

$$\begin{pmatrix} 2x_{11} & 0 & 0 & 0 & 0 & 0 \\ x_{12} & x_{11} & x_{12} & 0 & 0 & 0 \\ 0 & 2x_{12} & 2x_{22} & 0 & 0 & 0 \\ x_{13} & 0 & 0 & x_{11} & x_{12} & x_{13} \\ 0 & x_{13} & x_{23} & x_{12} & x_{22} & x_{23} \\ 0 & 0 & 0 & 2x_{13} & 2x_{23} & 2x_{33} \end{pmatrix}$$

Exceptional orbit variety is the free divisor defined by

$$\begin{vmatrix} x_{11} \cdot \begin{vmatrix} x_{11} & x_{12} \\ x_{12} & x_{22} \end{vmatrix} \cdot \begin{vmatrix} x_{11} & x_{12} & x_{13} \\ x_{12} & x_{22} & x_{23} \\ x_{13} & x_{23} & x_{33} \end{vmatrix} = 0.$$

2.2 Block representations

Block representations

Let $\rho: G \to \mathrm{GL}(W)$ be a rational representation of a connected complex algebraic Lie group with a partial flag of invariant subspaces

$$\{0\} = W_0 \subset \cdots \subset W_l = W.$$

Let $K_j = \ker(G \to \operatorname{GL}(W/W_j))$, so that

$$K_0 \subset \cdots \subset K_l = G.$$

Block representations

Definition 4. ρ (with the invariant subspaces) is a *candidate block representation* if

- 1. $\dim_{\mathbb{C}}(K_i) = \dim_{\mathbb{C}}(W_i)$ for $j = 1, \ldots, l$, and
- 2. the relative coefficient determinant $g_j: W \to \mathbb{C}$ is nonzero for $j = 1, \ldots, l$.

If also

3. each g_j is reduced and $\{g_j\}$ are relatively prime,

then ρ is a block representation. If (3) does not hold, ρ is a non-reduced block representation.

The matrix of a block representation

Using bases complementary to W_j in W_{j+1} and \mathfrak{t}_j in \mathfrak{t}_{j+1} makes the matrix of coefficients block lower triangular:

$$W_{l}/W_{l-1}\left\{\left(\begin{array}{cccc} & & & & & & & \\ A_{1,1} & \cdots & & & \\ \vdots & \ddots & \vdots \\ & & & A_{l,1} & \cdots & A_{l,l} \end{array}\right),\right.$$

Note that $g_j = \det(A_{j,j})$.

The exceptional orbit variety of a block representation

Theorem 5. If ρ is a block representation, then its exceptional orbit variety is a linear free divisor defined by

$$\prod_{j=1}^{l} g_j = 0. \tag{1}$$

If ρ is a non-reduced block representation, then its exceptional orbit variety is a linear free* divisor defined with non-reduced structure by (1).

2.3 More free divisors

Cholesky factorization

 $L_n(\mathbb{C})$ acts on $\operatorname{Sym}_n(\mathbb{C})$ by $A \cdot M = AMA^T$.

- Block representations
- Theorem ([BM06, GMNRS09]): Free divisors for each $n \in \mathbb{N}$
- Theorem ([GMNRS09], Damon-P.): Each of these is *H*-holonomic.

LU factorization

Let $G = L_n(\mathbb{C}) \times (\text{unipotent } n \times n \text{ upper triangular matrices})$ act on $M(n, n, \mathbb{C})$ by $(A, B) \cdot M = AMB^{-1}$.

- Non-reduced block representations
- Free* divisors

Modified LU factorization

Instead, use the group

$$\left\{ \left(A, \begin{pmatrix} 1 & 0 \\ 0 & B \end{pmatrix} \right) \middle| A \in L_n(\mathbb{C}), B^T \in L_{n-1}(\mathbb{C}) \right\}.$$

- Block representations
- Theorem (Damon-P.): Free divisor for each $n \in \mathbb{N}$
- Theorem (Damon-P.): Each of these is H-holonomic
- Analogous results for the $n \times (n+1)$ matrices

Example: Modified LU factorization

All free divisors are defined by a product of nested determinants.

Example 6. For 3×3 general matrices, the free divisor obtained from the modified LU factorization is defined by

$$\begin{vmatrix} x_{11} \cdot \begin{vmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{vmatrix} \cdot \begin{vmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{vmatrix} \cdot x_{12} \cdot \begin{vmatrix} x_{12} & x_{13} \\ x_{22} & x_{23} \end{vmatrix} = 0$$

Cholesky-like factorization for skew-symmetric

Let $G \subset L_n(\mathbb{C})$ consist of all matrices with 2×2 blocks of the form $\begin{pmatrix} 1 & 0 \\ 0 & * \end{pmatrix}$ down the diagonal. Let G act on $\operatorname{Sk}_n(\mathbb{C})$ by $A \cdot M = AMA^T$.

- Non-reduced block representation
- Free* divisors
- Conjecture: no subgroup of $L_n(\mathbb{C})$ gives a free divisor for $n \geq 4$. $\mathrm{GL}_n(\mathbb{C})$?

Free divisors for skew-symmetric matrices

Apply Saito's criterion directly using

• $\binom{n}{2} - (n-3)$ linear vector fields coming from

$$\left\{ \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & A \end{pmatrix} \middle| \lambda_i \neq 0, A \in L_{n-2}(\mathbb{C}) \right\}$$

5

acting on $\operatorname{Sk}_n(\mathbb{C})$ by $A \cdot M = AMA^T$

 \bullet and n-3 nonlinear Pfaffian vector fields of the form

$$\eta_{ab} = \sum_{b$$

where each coefficient is a particular Pfaffian.

Theorem (Damon-P.): The module these vector fields generate is an infinite-dimensional "solvable" Lie algebra.

Free divisors for skew-symmetric matrices

Theorem (Damon-P.): We obtain free divisors on $Sk_n(\mathbb{C})$ for all $n \geq 3$.

Example 7. When n = 4, coefficient matrix is

$$\begin{pmatrix} x_{12} & x_{12} & 0 & 0 & 0 & 0 \\ x_{13} & 0 & x_{13} & 0 & 0 & 0 \\ 0 & x_{23} & x_{23} & 0 & 0 & 0 \\ x_{14} & 0 & 0 & x_{13} & x_{14} & 0 \\ 0 & x_{24} & 0 & x_{23} & x_{24} & 0 \\ 0 & 0 & x_{34} & 0 & x_{34} & Pf \end{pmatrix}$$

Summary of free divisors

- Linear free divisors:
 - Symmetric $n \times n$, for all $n \in \mathbb{N}$ (Cholesky)
 - General $n \times n$, for all $n \in \mathbb{N}$ (Modified LU)
 - General $n \times (n+1)$, for all $n \in \mathbb{N}$ (Modified LU)
- Skew-symmetric $n \times n$, for all $n \ge 3$ (not linear)

3 Extensions of linear free divisors

3.1 Results

Extension results

- Symmetric:
 - Say the restriction of

$$\mathrm{GL}_n(\mathbb{C}) \to \mathrm{GL}(\mathrm{Sym}_n(\mathbb{C})), \qquad A \cdot M = AMA^T$$

to a subgroup and subspace gives a linear free divisor.

- We give sufficient conditions that a "solvable" extension to the $(n+1) \times (n+1)$ case gives a linear free divisor.
- Similar results for the general $n \times m$ matrices with action $(A, B) \cdot M = AMB^{-1}$.

3.2 Examples

Extension example 1 (symmetric)

Example 8. • The diagonal invertible $m \times m$ matrices acting on the diagonal $m \times m$ matrices by $A \cdot M = AMA^T$ gives a "normal crossings" linear free divisor defined by

$$\prod_{i=1}^{m} x_{i,i} = 0.$$

Extension example 1 (symmetric)

Example 9. • Can extend to to a free divisor defined (with non-reduced structure) by the product of the determinants of the upper left square submatrices of

$$\begin{pmatrix} x_{1,1} & x_{1,m+1} & \cdots & x_{1,n} \\ & \ddots & & \vdots & \ddots & \vdots \\ & & x_{m,m} & x_{m,m+1} & \cdots & x_{m,n} \\ x_{1,m+1} & \cdots & x_{m,m+1} & x_{m+1,m+1} & \cdots & x_{m+1,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ x_{1,n} & \cdots & x_{m,n} & x_{m+1,n} & \cdots & x_{n,n} \end{pmatrix}$$

Extension example 2 (symmetric)

A non-solvable example:

Example 10. • The group
$$\left\{ \begin{pmatrix} * & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{pmatrix} \in \operatorname{GL}_3(\mathbb{C}) \right\}$$
 acting on $\left\{ \begin{pmatrix} 0 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \in \operatorname{Sym}_3(\mathbb{C}) \right\}$ gives a linear free divisor defined by
$$\begin{vmatrix} x_{22} & x_{23} \\ x_{23} & x_{33} \end{vmatrix} \cdot \begin{vmatrix} 0 & x_{12} & x_{13} \\ x_{12} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{vmatrix} = 0.$$

Extension example 2 (symmetric)

A non-solvable example:

Example 11. • Solvable extensions add "generic determinants" to give linear free divisors on

$$\{A \in \mathrm{Sym}_n(\mathbb{C}) | (A)_{1,1} = 0\}$$

for all $n \geq 3$.

3.3 Future work

Future work

- When may we just "change the group" to obtain a linear free divisor?
- Is there a general extension mechanism for linear free divisors?
- When is an extension *H*-holonomic?
- Why do many free divisors take the form of "determinantal arrangements"?
- Questions?

References

[Sai80]

References

[BM06]	Ragnar-Olaf Buchweitz and David Mond, Linear free divisors and quiver representations, Singularities and computer algebra, London Math. Soc. Lecture Note Ser., vol. 324, Cambridge Univ. Press, Cambridge, 2006,
	pp. 41–77. MR 2228227 (2007d:16028)

[GMNRS09] Michel Granger, David Mond, Alicia Nieto-Reyes, and Mathias Schulze, Linear free divisors and the global logarithmic comparison theorem, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 811–850. MR 2521436 (2010g:32047)

Kyoji Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 265–291. MR 586450 (83h:32023)