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1 Free divisors

1.1 Free divisors

Free divisors

Let θn be germs of holomorphic vector fields at 0 in Cn.

For hypersurface (V, 0) ⊂ (Cn, 0), define the OCn,0-module and Lie algebra

Derlog(V ) = {η ∈ θn|η(f) ∈ I(V ) for all f ∈ I(V )}.

Definition 1 (Saito). If Derlog(V ) is free (of rank n), then (V, 0) is a free divisor.

Our Problem

• For a vector space of square matrices (e.g., Symn(C), M(n,C), Sk2k(C)), find a free divisor V which includes
the hypersurface of singular matrices as a component.

• Even better if V = H−1(0) is H-holonomic

1.2 Free divisors from representations

Saito’s criterion

Theorem 2 (Saito). Let δ1, · · · , δn ∈ θn with δi =
∑n

j=1 aji(z) ∂
∂zj

. Let M = OCn,0{δ1, . . . , δn}. If



1. M is a Lie algebra, and

2. the coefficient determinant h = det(aji(z)) defines a reduced hypersurface (V, 0),

then (V, 0) is a free divisor with Derlog(V ) = M .

Representations

Definition 3. An equidimensional representation ρ : G→ GL(W ) is a rational representation of a connected complex
algebraic Lie group with an open orbit Ω and n = dimC(G) = dimC(W ).

• If E1, . . . , En ∈ g is a basis and each δi = ξEi
is a vector field on W obtained by differentiating ρ, then

h = det(aji(z)) defines the exceptional orbit variety V = W \ Ω.

• (Mond) By Saito’s criterion, if h is reduced then V is a linear free divisor.

• If h is not reduced then V has a “free* divisor structure.”

Linear free divisors

• Linear free divisors from quiver representations have been studied ([BM06, GMNRS09]); these use reductive
groups

• We use solvable groups.

2 Free divisors from solvable groups

2.1 Motivation

Matrix factorizations

The complex analogues of the following matrix factorizations involve equidimensional representations of solvable
groups:

• Cholesky factorization for symmetric matrices

• LU factorization for general n× n matrices

• A Cholesky-like factorization for skew-symmetric matrices

Ex: Cholesky representation

• Let Ln(C) be the group of n× n invertible lower triangular matrices.

• Ln(C) acts on Symn(C) by A ·M = AMAT .

• Equidimensional!

• Exceptional orbit variety?
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Cholesky representation

Matrix of coefficients for 3× 3, for some choice of bases:
2x11 0 0 0 0 0
x12 x11 0 x12 0 0
x13 0 x11 0 x12 x13

0 2x12 0 2x22 0 0
0 x13 x12 x23 x22 x23

0 0 2x13 0 2x23 2x33


Is determinant reduced?

Cholesky representation

• Consider the partial flag of invariant subspaces of Sym3(C):

{0} ⊂


0 0 ∗

0 0 ∗
∗ ∗ ∗

 ⊂

0 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 ⊂ Sym3(C).

• Kernels of corresponding quotient representations (L3(C)→ GL(Sym3(C)/W )) are

{±I} ⊂

±
1 0 0

0 1 0
∗ ∗ ∗

 ⊂

±1 0 0
∗ ∗ 0
∗ ∗ ∗

 ⊂ L3(C).

Cholesky representation

With bases chosen to respect this structure:
2x11 0 0 0 0 0
x12 x11 x12 0 0 0
0 2x12 2x22 0 0 0
x13 0 0 x11 x12 x13

0 x13 x23 x12 x22 x23

0 0 0 2x13 2x23 2x33


Exceptional orbit variety is the free divisor defined by

x11 ·
∣∣∣∣x11 x12

x12 x22

∣∣∣∣ ·
∣∣∣∣∣∣
x11 x12 x13

x12 x22 x23

x13 x23 x33

∣∣∣∣∣∣ = 0.

2.2 Block representations

Block representations

Let ρ : G → GL(W ) be a rational representation of a connected complex algebraic Lie group with a partial flag of
invariant subspaces

{0} = W0 ⊂ · · · ⊂Wl = W.

Let Kj = ker(G→ GL(W/Wj)), so that
K0 ⊂ · · · ⊂ Kl = G.
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Block representations

Definition 4. ρ (with the invariant subspaces) is a candidate block representation if

1. dimC(Kj) = dimC(Wj) for j = 1, . . . , l, and

2. the relative coefficient determinant gj : W → C is nonzero for j = 1, . . . , l.

If also

3. each gj is reduced and {gj} are relatively prime,

then ρ is a block representation. If (3) does not hold, ρ is a non-reduced block representation.

The matrix of a block representation

Using bases complementary to Wj in Wj+1 and kj in kj+1 makes the matrix of coefficients block lower triangular:


kl/kl−1︷︸︸︷ k1/k0︷︸︸︷

Wl/Wl−1{ A1,1 · · · 0
...

. . .
...

W1/W0 { Al,1 · · · Al,l

,

Note that gj = det(Aj,j).

The exceptional orbit variety of a block representation

Theorem 5. If ρ is a block representation, then its exceptional orbit variety is a linear free divisor defined by

l∏
j=1

gj = 0. (1)

If ρ is a non-reduced block representation, then its exceptional orbit variety is a linear free* divisor defined with
non-reduced structure by (1).

2.3 More free divisors

Cholesky factorization

Ln(C) acts on Symn(C) by A ·M = AMAT .

• Block representations

• Theorem ([BM06, GMNRS09]): Free divisors for each n ∈ N

• Theorem ([GMNRS09], Damon-P.): Each of these is H-holonomic.
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LU factorization

Let G = Ln(C)× (unipotent n× n upper triangular matrices) act on M(n, n,C) by (A,B) ·M = AMB−1.

• Non-reduced block representations

• Free* divisors

Modified LU factorization

Instead, use the group {(
A,

(
1 0
0 B

))∣∣∣∣A ∈ Ln(C), BT ∈ Ln−1(C)
}
.

• Block representations

• Theorem (Damon-P.): Free divisor for each n ∈ N

• Theorem (Damon-P.): Each of these is H-holonomic

• Analogous results for the n× (n+ 1) matrices

Example: Modified LU factorization

All free divisors are defined by a product of nested determinants.

Example 6. For 3× 3 general matrices, the free divisor obtained from the modified LU factorization is defined by

x11 ·
∣∣∣∣x11 x12

x21 x22

∣∣∣∣ ·
∣∣∣∣∣∣
x11 x12 x13

x21 x22 x23

x31 x32 x33

∣∣∣∣∣∣ · x12 ·
∣∣∣∣x12 x13

x22 x23

∣∣∣∣ = 0

Cholesky-like factorization for skew-symmetric

LetG ⊂ Ln(C) consist of all matrices with 2×2 blocks of the form
(

1 0
0 ∗

)
down the diagonal. LetG act on Skn(C)

by A ·M = AMAT .

• Non-reduced block representation

• Free* divisors

• Conjecture: no subgroup of Ln(C) gives a free divisor for n ≥ 4. GLn(C)?

Free divisors for skew-symmetric matrices

Apply Saito’s criterion directly using

•
(
n
2

)
− (n− 3) linear vector fields coming from

λ1 0 0
0 λ2 0
0 0 A

∣∣∣∣∣∣λi 6= 0, A ∈ Ln−2(C)


acting on Skn(C) by A ·M = AMAT
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• and n− 3 nonlinear Pfaffian vector fields of the form

ηab =
∑

b<p<q≤n

S(a · · · bpq) ∂

∂xpq
,

where each coefficient is a particular Pfaffian.

Theorem (Damon-P.): The module these vector fields generate is an infinite-dimensional “solvable” Lie algebra.

Free divisors for skew-symmetric matrices

Theorem (Damon-P.): We obtain free divisors on Skn(C) for all n ≥ 3.

Example 7. When n = 4, coefficient matrix is
x12 x12 0 0 0 0
x13 0 x13 0 0 0
0 x23 x23 0 0 0
x14 0 0 x13 x14 0
0 x24 0 x23 x24 0
0 0 x34 0 x34 Pf



Summary of free divisors

• Linear free divisors:

– Symmetric n× n, for all n ∈ N (Cholesky)

– General n× n, for all n ∈ N (Modified LU)

– General n× (n+ 1), for all n ∈ N (Modified LU)

• Skew-symmetric n× n, for all n ≥ 3 (not linear)

3 Extensions of linear free divisors

3.1 Results

Extension results

• Symmetric:

– Say the restriction of
GLn(C)→ GL(Symn(C)), A ·M = AMAT

to a subgroup and subspace gives a linear free divisor.

– We give sufficient conditions that a “solvable” extension to the (n+ 1)× (n+ 1) case gives a linear free
divisor.

• Similar results for the general n×m matrices with action (A,B) ·M = AMB−1.
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3.2 Examples

Extension example 1 (symmetric)
Example 8. • The diagonal invertiblem×mmatrices acting on the diagonalm×mmatrices byA ·M = AMAT

gives a “normal crossings” linear free divisor defined by
m∏

i=1

xi,i = 0.

Extension example 1 (symmetric)
Example 9. • Can extend to to a free divisor defined (with non-reduced structure) by the product of the determi-

nants of the upper left square submatrices of

x1,1 x1,m+1 · · · x1,n

. . .
...

. . .
...

xm,m xm,m+1 · · · xm,n

x1,m+1 · · · xm,m+1 xm+1,m+1 · · · xm+1,n

...
. . .

...
...

. . .
...

x1,n · · · xm,n xm+1,n · · · xn,n


.

Extension example 2 (symmetric)

A non-solvable example:

Example 10. • The group


∗ 0 0

0 ∗ ∗
0 ∗ ∗

 ∈ GL3(C)

 acting on


0 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 ∈ Sym3(C)

 gives a linear

free divisor defined by ∣∣∣∣x22 x23

x23 x33

∣∣∣∣ ·
∣∣∣∣∣∣

0 x12 x13

x12 x22 x23

x31 x32 x33

∣∣∣∣∣∣ = 0.

Extension example 2 (symmetric)

A non-solvable example:
Example 11. • Solvable extensions add “generic determinants” to give linear free divisors on

{A ∈ Symn(C)|(A)1,1 = 0}

for all n ≥ 3.

3.3 Future work

Future work

• When may we just “change the group” to obtain a linear free divisor?

• Is there a general extension mechanism for linear free divisors?

• When is an extension H-holonomic?

• Why do many free divisors take the form of “determinantal arrangements”?

• Questions?
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