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Free divisors

Let θn be germs of holomorphic vector fields at 0 in Cn.
For hypersurface (V ,0) ⊂ (Cn,0), define the OCn,0-module and
Lie algebra

Derlog(V ) = {η ∈ θn|η(f ) ∈ I(V ) for all f ∈ I(V )}.

Definition (Saito)

If Derlog(V ) is free (of rank n), then (V ,0) is a free divisor.
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Our Problem

For a vector space of square matrices (e.g., Symn(C),
M(n,C), Sk2k (C)), find a free divisor V which includes the
hypersurface of singular matrices as a component.
Even better if V = H−1(0) is H-holonomic
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Saito’s criterion

Theorem (Saito)

Let δ1, · · · , δn ∈ θn with δi =
∑n

j=1 aji(z) ∂
∂zj

. Let

M = OCn,0{δ1, . . . , δn}. If
1 M is a Lie algebra, and
2 the coefficient determinant h = det(aji(z)) defines a

reduced hypersurface (V ,0),
then (V ,0) is a free divisor with Derlog(V ) = M.
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Representations

Definition
An equidimensional representation ρ : G→ GL(W ) is a rational
representation of a connected complex algebraic Lie group with
an open orbit Ω and n = dimC(G) = dimC(W ).

If E1, . . . ,En ∈ g is a basis and each δi = ξEi is a vector
field on W obtained by differentiating ρ, then
h = det(aji(z)) defines the exceptional orbit variety
V = W \ Ω.
(Mond) By Saito’s criterion, if h is reduced then V is a
linear free divisor.
If h is not reduced then V has a “free* divisor structure.”
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Linear free divisors

Linear free divisors from quiver representations have been
studied ([BM06, GMNRS09]); these use reductive groups
We use solvable groups.
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Matrix factorizations

The complex analogues of the following matrix factorizations
involve equidimensional representations of solvable groups:

Cholesky factorization for symmetric matrices
LU factorization for general n × n matrices
A Cholesky-like factorization for skew-symmetric matrices
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Ex: Cholesky representation

Let Ln(C) be the group of n × n invertible lower triangular
matrices.
Ln(C) acts on Symn(C) by A ·M = AMAT .
Equidimensional!
Exceptional orbit variety?
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Cholesky representation

Matrix of coefficients for 3× 3, for some choice of bases:

2x11 0 0 0 0 0
x12 x11 0 x12 0 0
x13 0 x11 0 x12 x13
0 2x12 0 2x22 0 0
0 x13 x12 x23 x22 x23
0 0 2x13 0 2x23 2x33


Is determinant reduced?
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Cholesky representation

Consider the partial flag of invariant subspaces of Sym3(C):

{0} ⊂


0 0 ∗

0 0 ∗
∗ ∗ ∗

 ⊂

0 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 ⊂ Sym3(C).

Kernels of corresponding quotient representations
(L3(C)→ GL(Sym3(C)/W )) are

{±I} ⊂

±
1 0 0

0 1 0
∗ ∗ ∗

 ⊂

±1 0 0
∗ ∗ 0
∗ ∗ ∗

 ⊂ L3(C).
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Cholesky representation

With bases chosen to respect this structure:

2x11 0 0 0 0 0
x12 x11 x12 0 0 0
0 2x12 2x22 0 0 0

x13 0 0 x11 x12 x13
0 x13 x23 x12 x22 x23
0 0 0 2x13 2x23 2x33


Exceptional orbit variety is the free divisor defined by

x11 ·
∣∣∣∣x11 x12
x12 x22

∣∣∣∣ ·
∣∣∣∣∣∣
x11 x12 x13
x12 x22 x23
x13 x23 x33

∣∣∣∣∣∣ = 0.
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Block representations

Let ρ : G→ GL(W ) be a rational representation of a connected
complex algebraic Lie group with a partial flag of invariant
subspaces

{0} = W0 ⊂ · · · ⊂Wl = W .

Let Kj = ker(G→ GL(W/Wj)), so that

K0 ⊂ · · · ⊂ Kl = G.
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Block representations

Definition
ρ (with the invariant subspaces) is a candidate block
representation if

1. dimC(Kj) = dimC(Wj) for j = 1, . . . , l , and
2. the relative coefficient determinant gj : W → C is nonzero

for j = 1, . . . , l .
If also

3. each gj is reduced and {gj} are relatively prime,
then ρ is a block representation. If (3) does not hold, ρ is a
non-reduced block representation.
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The matrix of a block representation

Using bases complementary to Wj in Wj+1 and kj in kj+1 makes
the matrix of coefficients block lower triangular:


kl/kl−1︷︸︸︷ k1/k0︷︸︸︷

Wl/Wl−1{ A1,1 · · · 0
...

. . .
...

W1/W0 { Al,1 · · · Al,l

,
Note that gj = det(Aj,j).
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The exceptional orbit variety of a block representation

Theorem
If ρ is a block representation, then its exceptional orbit variety is
a linear free divisor defined by

l∏
j=1

gj = 0. (1)

If ρ is a non-reduced block representation, then its exceptional
orbit variety is a linear free* divisor defined with non-reduced
structure by (1).
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Cholesky factorization

Ln(C) acts on Symn(C) by A ·M = AMAT .
Block representations
Theorem ([BM06, GMNRS09]): Free divisors for each
n ∈ N
Theorem ([GMNRS09], Damon-P.): Each of these is
H-holonomic.
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LU factorization

Let G = Ln(C)× (unipotent n × n upper triangular matrices) act on
M(n,n,C) by (A,B) ·M = AMB−1.

Non-reduced block representations
Free* divisors
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Modified LU factorization

Instead, use the group{(
A,
(

1 0
0 B

))∣∣∣∣A ∈ Ln(C),BT ∈ Ln−1(C)

}
.

Block representations
Theorem (Damon-P.): Free divisor for each n ∈ N
Theorem (Damon-P.): Each of these is H-holonomic
Analogous results for the n × (n + 1) matrices
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Example: Modified LU factorization

All free divisors are defined by a product of nested
determinants.

Example
For 3× 3 general matrices, the free divisor obtained from the
modified LU factorization is defined by

x11 ·
∣∣∣∣x11 x12
x21 x22

∣∣∣∣ ·
∣∣∣∣∣∣
x11 x12 x13
x21 x22 x23
x31 x32 x33

∣∣∣∣∣∣ · x12 ·
∣∣∣∣x12 x13
x22 x23

∣∣∣∣ = 0
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Cholesky-like factorization for skew-symmetric

Let G ⊂ Ln(C) consist of all matrices with 2× 2 blocks of the

form
(

1 0
0 ∗

)
down the diagonal. Let G act on Skn(C) by

A ·M = AMAT .

Non-reduced block representation
Free* divisors
Conjecture: no subgroup of Ln(C) gives a free divisor for
n ≥ 4. GLn(C)?
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Free divisors for skew-symmetric matrices

Apply Saito’s criterion directly using(n
2

)
− (n − 3) linear vector fields coming from

λ1 0 0
0 λ2 0
0 0 A

∣∣∣∣∣∣λi 6= 0,A ∈ Ln−2(C)


acting on Skn(C) by A ·M = AMAT

and n − 3 nonlinear Pfaffian vector fields of the form

ηab =
∑

b<p<q≤n

S(a · · · bpq)
∂

∂xpq
,

where each coefficient is a particular Pfaffian.
Theorem (Damon-P.): The module these vector fields generate
is an infinite-dimensional “solvable” Lie algebra.
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Free divisors for skew-symmetric matrices

Theorem (Damon-P.): We obtain free divisors on Skn(C) for all
n ≥ 3.

Example
When n = 4, coefficient matrix is

x12 x12 0 0 0 0
x13 0 x13 0 0 0
0 x23 x23 0 0 0

x14 0 0 x13 x14 0
0 x24 0 x23 x24 0
0 0 x34 0 x34 Pf
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Summary of free divisors

Linear free divisors:
Symmetric n × n, for all n ∈ N (Cholesky)
General n × n, for all n ∈ N (Modified LU)
General n × (n + 1), for all n ∈ N (Modified LU)

Skew-symmetric n × n, for all n ≥ 3 (not linear)
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Extension results

Symmetric:
Say the restriction of

GLn(C)→ GL(Symn(C)), A ·M = AMAT

to a subgroup and subspace gives a linear free divisor.
We give sufficient conditions that a “solvable” extension to
the (n + 1)× (n + 1) case gives a linear free divisor.

Similar results for the general n ×m matrices with action
(A,B) ·M = AMB−1.
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Extension example 1 (symmetric)

Example
The diagonal invertible m ×m matrices acting on the
diagonal m×m matrices by A ·M = AMAT gives a “normal
crossings” linear free divisor defined by

m∏
i=1

xi,i = 0.
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Extension example 1 (symmetric)

Example
Can extend to to a free divisor defined (with non-reduced
structure) by the product of the determinants of the upper
left square submatrices of

x1,1 x1,m+1 · · · x1,n
. . .

...
. . .

...
xm,m xm,m+1 · · · xm,n

x1,m+1 · · · xm,m+1 xm+1,m+1 · · · xm+1,n
...

. . .
...

...
. . .

...
x1,n · · · xm,n xm+1,n · · · xn,n


.
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Extension example 2 (symmetric)

A non-solvable example:

Example

The group


∗ 0 0

0 ∗ ∗
0 ∗ ∗

 ∈ GL3(C)

 acting on
0 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 ∈ Sym3(C)

 gives a linear free divisor

defined by

∣∣∣∣x22 x23
x23 x33

∣∣∣∣ ·
∣∣∣∣∣∣

0 x12 x13
x12 x22 x23
x31 x32 x33

∣∣∣∣∣∣ = 0.
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Extension example 2 (symmetric)

A non-solvable example:

Example
Solvable extensions add “generic determinants” to give
linear free divisors on{

A ∈ Symn(C)
∣∣(A)1,1 = 0

}
for all n ≥ 3.
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Future work

When may we just “change the group” to obtain a linear
free divisor?
Is there a general extension mechanism for linear free
divisors?
When is an extension H-holonomic?
Why do many free divisors take the form of “determinantal
arrangements”?
Questions?
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