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Motivation

For a vector space of square matrices (e.g., Symn(C),
M(n,C), Sk2k (C)), find a free divisor V which includes the
hypersurface of singular matrices as a component.
Even better if

V = (free divisor) ∪ {singular matrices}
V = H−1(0) is H-holonomic
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Saito’s criterion

Theorem (Saito)

Let δ1, · · · , δn ∈ θn with δi =
∑n

j=1 aji(z) ∂
∂zj

. Let

M = OCn,0{δ1, . . . , δn}. If
1 M is a Lie algebra, and
2 the coefficient determinant h = det(aji(z)) defines a

reduced hypersurface (V ,0),
then (V ,0) is a free divisor with Derlog(V ) = M.
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Representations

Definition
An equidimensional representation ρ : G→ GL(W ) is a rational
representation of a connected complex algebraic Lie group with
an open orbit Ω and n = dimC(G) = dimC(W ).

If E1, . . . ,En ∈ g is a basis and each δi = ξEi is a vector
field on W obtained by differentiating ρ, then
h = det(aji(z)) defines the exceptional orbit variety
V = W \ Ω.
(Mond) By Saito’s criterion, if h is reduced then V is a
linear free divisor.
If h is not reduced then V has a “free* divisor structure.”
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Linear free divisors

Linear free divisors using primarily reductive groups have
been studied (e.g., [BM06], [GMNRS09], etc.)
We use primarily solvable groups.
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Why solvable groups?

1 The complex analogues of the following matrix
factorizations involve equidimensional representations of
solvable groups:

Cholesky factorization for symmetric matrices
LU factorization for general n × n matrices
A Cholesky-like factorization for skew-symmetric matrices

2 Representations of solvable groups have a complete flag
of invariant subspaces (Lie-Kolchin Theorem)
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Ex: Cholesky representation

Let Ln(C) be the group of n × n invertible lower triangular
matrices.
Ln(C) acts on Symn(C) by A ·M = AMAT .
Equidimensional!
Exceptional orbit variety?

Brian Pike (joint with James Damon) Block representations and their properties



Free divisors
Block representations

Examples

Motivation for using solvable groups
Block representations
Properties

Ex: Cholesky representation

Let Ln(C) be the group of n × n invertible lower triangular
matrices.
Ln(C) acts on Symn(C) by A ·M = AMAT .
Equidimensional!
Exceptional orbit variety?

Brian Pike (joint with James Damon) Block representations and their properties



Free divisors
Block representations

Examples

Motivation for using solvable groups
Block representations
Properties

Ex: Cholesky representation

Matrix of coefficients for 3× 3, for some choice of bases:

2x11 0 0 0 0 0
x12 x11 0 x12 0 0
x13 0 x11 0 x12 x13
0 2x12 0 2x22 0 0
0 x13 x12 x23 x22 x23
0 0 2x13 0 2x23 2x33


Is determinant reduced?
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Ex: Cholesky representation

Consider the partial flag of invariant subspaces of Sym3(C):

{0} ⊂


0 0 ∗

0 0 ∗
∗ ∗ ∗

 ⊂

0 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 ⊂ Sym3(C).

Kernels of corresponding quotient representations
(L3(C)→ GL(Sym3(C)/W )) are

{±I} ⊂

±
1 0 0

0 1 0
∗ ∗ ∗

 ⊂

±1 0 0
∗ ∗ 0
∗ ∗ ∗

 ⊂ L3(C).
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Ex: Cholesky representation

With bases chosen to respect this structure:

2x11 0 0 0 0 0
x12 x11 x12 0 0 0
0 2x12 2x22 0 0 0

x13 0 0 x11 x12 x13
0 x13 x23 x12 x22 x23
0 0 0 2x13 2x23 2x33


Exceptional orbit variety is the free divisor defined by

x11 ·
∣∣∣∣x11 x12
x12 x22

∣∣∣∣ ·
∣∣∣∣∣∣
x11 x12 x13
x12 x22 x23
x13 x23 x33

∣∣∣∣∣∣ = 0.
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Block representations

Let ρ : G→ GL(W ) be a rational representation of a connected
complex algebraic Lie group with a partial flag of invariant
subspaces

{0} = W0 ⊂ · · · ⊂Wl = W .

Let Kj = ker(G→ GL(W/Wj)), so that

K0 ⊂ · · · ⊂ Kl = G.
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Block representations

Definition
ρ (with the invariant subspaces) is a candidate block
representation if

1. dimC(Kj) = dimC(Wj) for j = 1, . . . , l , and
2. the relative coefficient determinant gj : W → C is nonzero

for j = 1, . . . , l .
If also

3. each gj is reduced and {gj} are relatively prime,
then ρ is a block representation. If (3) does not hold, ρ is a
non-reduced block representation.
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The matrix of a block representation

Using bases complementary to Wj in Wj+1 and kj in kj+1 makes
the matrix of coefficients block lower triangular:


kl/kl−1︷︸︸︷ k1/k0︷︸︸︷

Wl/Wl−1{ Al,l · · · 0
...

. . .
...

W1/W0 { Al,1 · · · A1,1

,
Note that gj = det(Aj,j).
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The exceptional orbit variety of a block representation

Theorem
If ρ is a block representation, then its exceptional orbit variety is
a linear free divisor defined by

l∏
j=1

gj = 0. (1)

If ρ is a non-reduced block representation, then its exceptional
orbit variety is a linear free* divisor defined with non-reduced
structure by (1).
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Quotient Property

If ρ : G→ GL(W ) is a block representation with invariant
subspaces

{0} = W0 ⊂ · · · ⊂Wl = W ,

then ρ : G/Kj → GL(W/Wj) is a block representation with
invariant subspaces

{0} 'Wj/Wj ⊂ · · · ⊂Wl/Wj = W/Wj

and coefficient determinant

l∏
i=j+1

gi .

Thus have (free divisor) = (free divisor) ∪ (another hypersurface).
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Quotient Property: Example

From the 3× 3 Cholesky representation, can recover

x11 = 0 and x11 ·
∣∣∣∣x11 x12
x12 x22

∣∣∣∣ = 0

using the quotient property.
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Extension Property

Let ρ : G→ GL(W ) be a representation, V ⊂W an invariant
subspace, and K = ker(G→ GL(W/V )). If

ρ : G/K → GL(W/V ) is a block representation,
dim(V ) = dim(K ), and
the relative coefficient determinant for K acting on V is
reducible and relatively prime to the coefficient determinant
of ρ

then ρ is a block representation with invariant subspaces

{0} ⊂ V ⊂ π−1(W1) ⊂ · · · ⊂ π−1(Wl−1) ⊂W

and with one new relative coefficient determinant.
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Towers

Often have homomorphisms between representations of matrix
groups on spaces of matrices (i.e., pad in obvious ways)

A tower of block representations is a chain of inclusions of
representations

(G1,W1) ↪→ (G2,W2) ↪→ (G3,W3) ↪→ · · · ,

each of which is a block representation, such that for all j ,

(Gj−1,Wj−1) ↪→ (Gj ,Wj)→ (Gj/Kj ,Wj/Vj)

is an isomorphism (here, Vj is the largest nontrivial invariant
subspace in the block representation of (Gj ,Wj) and Kj is the
corresponding kernel).

Consequence: Add terms to the free divisors at every step
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Restriction Property

Let ρ : G→ GL(W ) be a block representation. If
we have a G-invariant subspace

Wj−1 ⊂W ⊂Wj

and an algebraic group

Kj−1 ⊂ K ⊂ Kj

with dim(W ) = dim(K ), and
the relative coefficient determinant of K/Kj−1 on W/Wj−1
and gj |W are reduced and relatively prime,

then restricting ρ to
K → GL(W )

gives a block representation.
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Examples on symmetric: 1

L1(C) acting on Sym1(C) by A · X = AXAT gives LFD

x11 = 0.

Using extension property, get a tower of LFDs

x11 ·
∣∣∣∣x11 x12
x12 x22

∣∣∣∣ ·
∣∣∣∣∣∣
x11 x12 x13
x12 x22 x23
x13 x23 x33

∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣
x11 x12 x13 x14
x12 x22 x23 x24
x13 x23 x33 x34
x14 x24 x34 x44

∣∣∣∣∣∣∣∣ · · ·
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Examples on symmetric: 2

Or, start with normal crossings divisor
∏m

i=1 xii = 0 (using
diagonal matrices for the group and the vector space). Use
extension property to get a tower of LFDs defined by principal
minors of

x1,1 x1,m+1 · · · x1,n
. . .

...
. . .

...
xm,m xm,m+1 · · · xm,n

x1,m+1 · · · xm,m+1 xm+1,m+1 · · · xm+1,n
...

. . .
...

...
. . .

...
x1,n · · · xm,n xm+1,n · · · xn,n


,

for any n ≥ m
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Examples on symmetric: 3

Use restriction on 3× 3 Cholesky:
∗0 ∗
∗ ∗ ∗

 acting on


0 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 ∈ Sym3(C)


Get the free divisor defined by

x12 · x22 ·

∣∣∣∣∣∣
0 x12 x13

x12 x22 x23
x13 x23 x33

∣∣∣∣∣∣ = 0,

which extends to a tower.
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Examples on symmetric: 4

Use restriction on 4× 4 Cholesky:

∗
0 ∗
0 ∗ ∗
0 ∗ ∗ ∗


 acting on




0 0 ∗ ∗
0 0 ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 ∈ Sym4(C)


Get the free divisor defined by

x13 · x23 ·
∣∣∣∣x13 x14
x23 x24

∣∣∣∣ ·
∣∣∣∣∣∣

0 x23 x24
x23 x33 x34
x24 x34 x44

∣∣∣∣∣∣ = 0,

which extends to a tower.

Brian Pike (joint with James Damon) Block representations and their properties



Free divisors
Block representations

Examples

Examples on symmetric
Examples on general
Future work

Examples on symmetric: 5

(Non-solvable) Consider
∗ 0 0

0 ∗ ∗
0 ∗ ∗

 acting on


0 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 ∈ Sym3(C)


Get the free divisor defined by

∣∣∣∣x22 x23
x23 x33

∣∣∣∣ ·
∣∣∣∣∣∣

0 x12 x13
x12 x22 x23
x13 x23 x33

∣∣∣∣∣∣ = 0,

which extends to a tower.
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Examples on general: 1

Let GLn × GLm act on M(n,m,C) by (A,B) · X = AXB−1.

Start with n = m = 1 and use extension property repeatedly (in
a particular way) to get a tower of free divisors on
M(1,1,C),M(1,2,C),M(2,2,C),M(2,3,C),M(3,3,C), etc.
These give modified LU decompositions

Example: On M(2,3,C),

x11 · x12 ·
∣∣∣∣x11 x12
x21 x22

∣∣∣∣ · ∣∣∣∣x12 x13
x22 x23

∣∣∣∣ = 0
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Examples on general: 2

Or, use restriction property to restrict to the subspace where
x11 = 0. Then for n ≥ 2, using the appropriate group, get a
tower, including, e.g.,

x12 · x21 · x22 ·
∣∣∣∣x12 x13
x22 x23

∣∣∣∣ = 0
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Examples on general: 3

(Non-solvable) Or, start with a free divisor from [BM06], defined
by the product of the maximal minors of a generic n × (n + 1)
matrix.

Can expand each of these (in same way) to get a tower
including, e.g.,

∣∣∣∣x11 x12
x21 x22

∣∣∣∣ · ∣∣∣∣x12 x13
x22 x23

∣∣∣∣ · ∣∣∣∣x11 x13
x21 x23

∣∣∣∣ ·
∣∣∣∣∣∣
x11 x12 x13
x21 x22 x23
x31 x32 x33

∣∣∣∣∣∣ = 0
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Future work

An arbitrary Lie group is a mixture of reductive and
solvable; is there a similar “decomposition” for linear free
divisors?
Why do many free divisors take the form of “determinantal
arrangements”?
Questions?
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